1 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=\sqrt{4-x^{2}}$ for $-2 \leqslant x \leqslant 2$.
(i) Show that the curve $y=\sqrt{4-x^{2}}$ is a semicircle of radius 2 , and explain why it is not the whole of this circle.

Fig. 9 shows a point $\mathrm{P}(a, b)$ on the semicircle. The tangent at P is shown.


Fig. 9
(ii) (A) Use the gradient of OP to find the gradient of the tangent at P in terms of $a$ and $b$.
(B) Differentiate $\sqrt{4-x^{2}}$ and deduce the value of $\mathrm{f}^{\prime}(a)$.
(C) Show that your answers to parts $(A)$ and $(B)$ are equivalent.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=3 \mathrm{f}(x-2)$, for $0 \leqslant x \leqslant 4$.
(iii) Describe a sequence of two transformations that would map the curve $y=\mathrm{f}(x)$ onto the curve $y=g(x)$.

Hence sketch the curve $y=g(x)$.
(iv) Show that if $y=\mathrm{g}(x)$ then $9 x^{2}+y^{2}=36 x$.

2 Fig. 7 shows part of the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=x \sqrt{1+x}$. The curve meets the $x$-axis at the origin and at the point P .


Fig. 7
(i) Verify that the point P has coordinates $(-1,0)$. Hence state the domain of the function $\mathrm{f}(x)$.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2+3 x}{2 \sqrt{1+x}}$.
(iii) Find the exact coordinates of the turning point of the curve. Hence write down the range of the function.
(iv) Use the substitution $u=1+x$ to show that

$$
\int_{-1}^{0} x \sqrt{1+x} \mathrm{~d} x=\int_{0}^{1}\left(\begin{array}{ll}
u^{\frac{3}{2}} & u^{\frac{1}{2}}
\end{array}\right) \mathrm{d} u .
$$

Hence find the area of the region enclosed by the curve and the $x$-axis.

3 Fig. 7 shows the curve $y=\frac{x^{2}}{1+2 x^{3}}$. It is undefined at $x=a$; the line $x=a$ is a vertical asymptote.


Fig. 7
(i) Calculate the value of $a$, giving your answer correct to 3 significant figures.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x-2 x^{4}}{\left(1+2 x^{3}\right)^{2}}$. Hence determine the coordinates of the turning points of the curve.
(iii) Show that the area of the region between the curve and the $x$-axis from $x=0$ to $x=1$ is $\frac{1}{6} \ln 3$.

